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LETTER TO THE EDITOR 

Integrable XYZ spin chain with boundaries 

Take0 Inami and Hitoshi Konno 
Yukawa Institute for Theoretical Physics, Kyoto University. Kyoto 60601. Japan 

Received 1 September 1994 

Abstracf We consider a general class of boundary terms of the open XYZ spin-4 chain 
compatible with integrability. We have obtained the gemd elliptic solution of e K-matrix 
obeying the boundary Yang-Baxter equation using the R-matrix of ule eight-ve&tex model and 
derived lhe associated integrable spinchain Hamiltonian. 

1 + 1-dimensional integrable models with boundaries find interesting applications in particle 
physics as well as condensed-matter systems. In view of this, attempts have recently 
been made at the integrable extension of conformal field theories [l ,  21, both massive and 
massless integrable quantum field theories [3-6] and solvable lattice models [7-131 to those 
with boundary terms. In the case of lattice models, relying on the earlier work by Cherednik 
[SI, Sklyanin has given [SI a general framework which enables us to treat this problem on an 
algebraic footing. In particular, the general solution of integrable boundary terms has been 
found in the XXZ and the XXX Heisenberg spin-chain system [12] based on his framework. 
In this letter, we will evaluate the general solution of boundary interactions in the case of 
XYZ Heisenberg spin-chain systems. 

The Hamiltonian of the XYZ spin-: chain is given by the transfer matrix of the eight- 
vertex model [14]. The eight-vertex model is defined in terms of the Boltzmann weights 
given by the elliptic solution R(u) of the Yang-Baxter (YB) equation 

Riz(u - u’)Ridu)Ru(u’) = Ru(u‘)RI~(u)RIz(u  -U’). (1) 

Here, we regard R(u) as linear operators acting on the tensor product of vector spaces V€3 V 
with V = C u + @ C u -  and Rlz = R @ l ,  RB = l8.R etc as those acting on VI @Vz€3K, 
where V, E V, i = 1.2.3. Setting 

CI.E2 

and arranging the elements of R in the order ( E , ,  E ~ )  = (++), (+-), (-+), (--), one can 
express the eight-vertex R- matrix^ as follows 

sn(u + rl )  . 0 .  0 ~~ ksnqsnusn(u+q) 

R(u) = ( ~ ~:. snq snu 0 0 ) (2) 
snu snq 

ksnqsnusn(u+q) 0 0 ,  + q )  

where sn U sn(u; k) is the Jacobi elliptic function of modulus 0 < k < 1. 
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Let Pij be the transposition operator on vi @ vj, i.e. P(x @ y) = y @ x. R-matrix (2) 
is known to have the following desirable properties: 

Regularity R(0) = r(q)P r(q) = sn q (3) 

P-symmeW P I Z R I Z ( ~ ) P I Z  = M u )  (4) 

T-symmetry RtIt2 12 ( U ) = &z(u) (5) 

unitarity R l z ( u ) ~ l z ( - u )  = p ( u ) l  p(u) = sn2 7 - sn2u (6) 

Crossing unitarity ~f ; (u )~ f l ' ( -u  - 7) = j(u)1 p(u)  = sn2 q - sn2(u + 7). (7) 

In the case of periodic boundary conditions, it is known~that the YB equation (1) implies 
a commuting family of transfer matrices. Hence, the model is integrable. 

We now consider the eight-vertex model with boundary interactions. Aiming at 
describing integrable systems with boundakes, Sklyanin [9] has introduced a pair of matrices 
K+(u) and K-(u).  The effects of the presence of boundaries at the left and right ends are 
solely described by K+(u) and K-(u),  respectively. &(U) are defined as the solutions to 
the relations 

Riz(u - ~ ' ) K _ ( u ) R i z ( u + ~ ' ) K - ( d )  K- (u ' )R i z (u+u' )K- (u)Rl z (~  -U') (8) 
I 2 2 1 

1 2 2 I 
Riz(-u+U') K$(u)Riz(-~-u'-27) K';(u') = K ~ ( ~ ' ) R i z ( - u - ~ ' - 2 q )  K:(u)Rlz(-u+~') 

(9) 

where K* id", @K*. Equations (8) and (9) are called boundary YB 
equations and &(U) are called boundary K-matrices. 

The boundary YB equations imply a commuting family of transfer matrices [9]. The 
transfer mahix t (u) ,  in this case, is defined using the K+ and the monodromy matrix T(u) 

I 2 .  
K* @ id", and .Y* 

as 

t ( u )  = tr[K+(u)T(u)K-(u)T-'(-u)l (10) 

where T(u)  is given by 

T(u) = RNO(IORN-IO@) ... Rio@). (1 1) 

The trace in (10) should be taken over V,. Then, the commuting property of t (u )  

[ t ( U ) ,  t(u')l = 0 (12) 

follows from the properties of R and the bbundary YB equations (8) and (9). 
The problem is now to solve equations (8 )  and (9) and find general solutions for K- and 

K+ using the eight-vertex R-mahix given in (2). It sufkes to consider the first equation, 
because of the following fact. Suppose K-(u)  is a solution of the lirst equation, then the 
function 

K+(u) = K:(-u - 7) (13) 
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gives the solution for the second~equation. 
We now proceed to solve equation (8). Write K ( u )  as 

We have found that, out of the sixteen equations in boundary YB equation (8), only three 
are independent: 

s-uu' + s+xd  =,s+ux' + s-xx' (15) 

YZ' + ~ S - S + Z Z '  = ZY' + kS-S+yy' 

S-s+yx' + ksiS-s-ur'+ ks,S-S+(s-uz' + s+xz') 

= S+s-yx' + ks:S+s+zx' + s,(s-uy' + s+xy') 

where we set x = xfu),  x' = x(u') etc, and 

sn E snq s* sn(u f U') Sh sn(u rt U' + a). (18) 

In the following, we also use the notation a(u) u(u) /x (u) ,  p(u) z (u ) / y (u )  and 
Y($ = Y ( U ) / X ( U ) .  

Dividing (15) by xx', one obtains 

sn(u~+ u')a(u) + sn(u -U') 
- u')a(u) + sn(u + U')' a(u') = 

Taking the llmit U' -+ U of m(u? - a(u)/u'  1 U, one obtains the following differential 
equation: 

da(u) 1 - CY(U)' 
(20) -=- 

du sn2u ' 

After the change of variable t = sn U, the integration of (20) takes the form 

d a  1 - kZt4 
(21) - = -_ ./" 1 - az ./" dl t (1 - fZ)(1 - k2tZ) 

where we have used the formulae 

2sn(u) cn(u) dn(u) 
1 - kZ sn4(u) sn(2u) = 

d - sn(u) = cn(u) dn(u). 
du 

One can easily obtain the general solution of equation (21) 

u(u)  Ccnudnu --nu 
x(u)  C c n u d n u f s n u  
-= 

where C is an arbitrary constant. 
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In a similar way, from (16) one obtains 

and the differential equation 

This implies the general solution 

z(u) 
y(u )  

A(l  -ksn2u) - 1 - ksnzu 
A(1- ksn* u)  + 1 + k snz u 

_-  - 

where A is another arbitrary constant, 
Dividing (17) by yy’, the third equation (17) can be written 

s,(s-a(u) + s+)(l - kS+S-S(U” 

s-s+ - S + L  +kp(u)s;(s-s- - S+s+)‘ 
_-  - Y ( U )  
yfu‘) 

Substituting (25) into (28) and 

Y (U) 1 sn(u - u’)a(u) + sn(u -t- U’) 
y(u‘) sn2u’ l+-@(u)sn(u -u‘)sn(u+u’) 
- = -, 

and replacing a@) and ’(U) by the right-hand side of (24) and (27). one can factorize (28) 
in the form of the ratio of the same functions; one with argument U and the other with U‘, 
respectively. We thus find 

y(u) A ( 1 - k s n 2 u ) + 1 + k s n 2 u  
x ( u )  - p  Ccnudnu + snu 
_-  

where /I is the third arbitrary constant. 
From (27) and (30), one can now obtain the following ratio: 

z(u) 
x(u)= 

pl(l -ksn2u)  - 1 - k s n 2 u  
Ccn U dn u -k snu 

It is then not difficult to check that the above solutions satisfy all the remaining equations 
if one notes the identity 

In summary, we have obtained the general solution of (8) as K-(u)  = K ( u ;  6, A,  f i )  
with 

K(u: t ,  A,  P) 
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where we have set C = sn C/ cn e dn6 and replaced p cn dn by p t .  We normalize the 
matrix K-(u)  as K-(O) = 1 for later convenience [9].. 

In the trigonometric limit k + ~0, where snu --f sin U, we recover the result in the case 
of the six-vertex model given by de Vega and GonzSlez Ruiz [12]. The rational limit is 
obtained from the trigonometric K-matrix by scaling U + qu, e --f qh and taking the limit 
q'+ 0. 

Because of 
equation (12). one can regard the transfer matrix t ( u )  as the generating function of integrals 
of motion of the system. Its first logarithmic derivative implies the following Hamiltonian: 

Let us next consider the corresponding XYZ spin-chain Hamiltonian. 

n 

where the two-site Hamiltonian is given by 

(35) 

By a direct calculation with the K-matrices K-(u)  = K-(u; c-, A-, p-) and K+(u) = 
k ( - u  - q; -$+, -A+, -p+) together with R-matrix (2). one obtains the following result: 

1 
r(s) 

&,+I = -Tm+iRAn+1(O). 

N-1 
H = C ( ( 1 +  r)+;+,",, + (1 - r)u:u:+, + AU;U;+~) 

"4 

+ snq(A-u; + B-u: + CO; 4- A+u$ f B+u: + C+uJ (36) 

where 

r = k s n 2 q  A = c n q d n q  

In conclusion, we have obtained the general elliptic solution of the boundary YB equation 
for the K-matrices and derived the Hamiltonian of the associated Xm spin-4 chain with 
boundary terms. 

An immediate question is to find the ground-state energy and the excitation specmm 
of the X Y Z  Hamiltonian we have derived. The diagonalization of this Hamiltonih can be 
achieved by means of the generalized algebraic Bethe ansatz [9] with some modification as 
in the periodic boundary condition case [14,1.5]. This subject is now under investigation. 

It is shown using the results of Bethe-ansatz-type analysis that, by tuning the X-Y 
anisotropy coupling (r in equation (36)), the Xm Hamiltonian with periodic boundary 
condition gives rise to the quantum sineGordon theory in the continuum limit [16]. In the 
case of the open XYZ spin chain, it is of interest to ask whether one can tune the coupling 
of boundary terms together with the r so that one can derive its field-theory l i t  The 

t The solution obtained in 1121 for the XYZ model are thc special wses of (33) associated with the specinl solutions 
= I ,  #(U)' = 1 of equations (20) and (26). 
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resulting theory is expected to be the quantum boundaxy sineGordon theory [3,4]. In the 
limit N + CO, we have three boundary terms proportional to ut, U[ and U; associated 
with three free parameters in K-, whereas the boundary term proposed by Sklyanin [I71 
and Ghoshal and Zamolodchikov [3] has two parameters. It is necessary to explain this 
difference in the analysis of the continuum limit. 

Furthermore, the higher logarithmic derivatives of the commuting transfer matrix give 
an infinite number of conserved quantities. In the closed X Y Z  spin-chain case, it was 
shown [IS] that the conservation laws associated with these quantities yield selection rules 
in the scattering process of the quantum sine-Gordon theory. It is an interesting question 
to ask how the parameters appearing in the K-matrices affect the scattering process of the 
boundary s indordon  theory. 

We will present our result on these problems in future publications. 
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to the subject of integrable models with boundaries. This work was supported in part by 
Soryushi Shogakukai and the grant-in-aid for scientific research on priority area 231, the 
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